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ABSTRACT

Existing noise-robust and reverberant-robust localization algorithms
fail to localize the target speaker when interfering speakers are
present. In this paper, we address the problem of localizing only
the target speaker in multi-speaker scenarios and propose a target
speaker localization algorithm, called GCC-speaker. Specifically,
we modify the weighting of the generalized cross-correlation with
phase transform (GCC-PHAT) algorithm and propose an optimal
speaker-dependent weighting based on a novel localization-related
loss function and data-driven training. The speaker-dependent
weighting is responsible for guiding the GCC algorithm to obtain
the optimal target speaker localization results. As for the loss func-
tion, we constrain the estimated GCC angular spectrum and the
estimated direction of arrival (DOA) to be close to their ground truth
values, respectively. The experimental results show the superiority
of GCC-speaker compared to the existing target speaker localization
algorithms for different signal-to-interference ratios, reverberation
times and array geometries.

Index Terms— Target speaker localization, speaker-dependent
weighting, generalized cross-correlation

1. INTRODUCTION

Speaker localization aims to estimate the direction of arrival (DOA)
of a speaker from microphone signals, and it is of importance for
multi-channel speech enhancement and recognition [1]. The gen-
eralized cross-correlation with phase transform (GCC-PHAT) [2]
and multiple signal classification (MUSIC) [3] are the two most
popular speaker localization algorithms, among which GCC-PHAT
has become a mainstream mainly because of its computational effi-
ciency and good tracking capability [4]. However, the performance
of GCC-PHAT is still unsatisfactory in adverse scenarios, which
may include noise, reverberation and multiple speakers [5].

Although many approaches have been developed to improve the
robustness of GCC-PHAT against noise or reverberation [6, 7, 8,
9, 10], the multi-speaker issue (e.g., in the cocktail party) still re-
mains challenging, because interfering speakers are non-negligible
factors and prevent the GCC-PHAT from effectively localizing the
speaker of interested. Localizing the target speaker in multi-speaker
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cases is called target speaker localization [11, 12, 13] and it differs
with the multi-speaker localization [14, 15, 16] which estimates the
DOAs of all speakers. Although the target speaker may be localized
in the multi-speaker localization settings with an additional post-
identification process, the multi-speaker localization itself always
relies on counting source numbers and can be erroneous. There-
fore, directly identifying the target speaker’s DOA is more practi-
cal and can be widely used in applications such as teleconferencing
and smart personal devices which concern only one target speaker
in probably overlapping speeches. In this paper, we will address the
target speaker localization problem.

There are several works [11, 12, 13] for target speaker local-
ization. These methods generally first estimate a speaker-dependent
mask and then apply it to the existing localization algorithms. In
[11] and [12], the speech enhancement loss and the keyword cues are
used to obtain the speaker-dependent mask, respectively. In [13], an
external microphone close to the target speaker is adopted to statisti-
cally derive the speaker-dependent mask combining with the original
microphone array signals. Although many strategies can be used to
derive the mask, the designing of these mask estimation is rather
heuristic, and it is hard to judge whether these masks are optimal for
target speaker localization. As a consequence, these methods usually
yield sub-optimal results.

In this paper, we tightly integrate the speaker-dependent mask
estimator and the computationally efficient GCC-PHAT algorithm
to achieve end-to-end target speaker localization. The proposed
algorithm is called GCC-speaker. Compared with previous tar-
get speaker localization works [11, 12, 13], the mask estimator is
directly optimized with a localization-related loss function. Com-
pared with previous robust GCC-PHAT algorithm [6, 7, 8, 9, 10],
we propose an optimal speaker-dependent weighting for GCC in
multi-speaker scenarios. More specifically, we use the well-known
SpeakerBeam [17] structure as the mask estimator to output the
speaker-dependent mask. Next, we combine the speaker-dependent
mask with the weighting function of GCC-PHAT to propose an
optimal speaker-dependent weighting based on a novel localization-
related loss function. The optimal speaker-dependent weighting is
then used by the GCC algorithm to obtain the optimal DOA results.
As for the loss function, we adopt a multi-task learning (MTL) strat-
egy to make the estimated GCC angular spectrum and the estimated
DOA close to their ground truth values, respectively. Experiments
verified the effectiveness of the proposed algorithm.

2. SIGNAL MODEL

Consider an array containing two microphones to capture signals
from one target speaker andK interfering speakers. The microphoneIC
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Fig. 1. Overall scheme of GCC-speaker. In the training phase, the weighting function part (red dotted box) first outputs the speaker-
dependent weighting, which is then fed into the loss function part (green dotted box). Gradients are backpropagated from the loss all the way
back to the mask estimator (SpeakerBeam in the blue box). In the inference phase, we only need the speaker-dependent weighting function
calculated from the weighting function part (red dotted box) and integrate it into the conventional GCC algorithm to find the target speaker’s
DOA.

observation vector y(t, f) = [y1(t, f), y2(t, f)]T in the short-time
Fourier transform (STFT) domain is given by

y(t, f) = x(t, f) +

K∑
k=1

ik(t, f) + v(t, f), (1)

where t = 1, ..., T and f = 1, .., F denote the time and frequency
indices respectively, and x(t, f), ik(t, f) and v(t, f) are the signal
vectors of the target speaker, the k-th interfering speaker and the
ambient noise respectively.

The GCC algorithm [2] can be applied to estimate the DOA at
time index t, i.e.,

θ̂(t) = arg max
θ

F/2∑
f=1

Φ(t, f)y1(t, f)y∗2(t, f)ejω
d cos θ
c , (2)

where superscript ∗ denotes the complex conjugate, j =
√
−1 is the

imaginary unit, c is the speed of sound, ω is the angular frequency,
d is the microphone distance and Φ(t, f) is a weighting function. In
order to discard the autocorrelation effect of speech, the GCC-PHAT
algorithm [2] sets Φ(t, f) = 1

|y1(t,f)||y∗2 (t,f)| to whiten the source
amplitude spectrum. To further improve the robustness of GCC to
ambient noise v(t, f), a mask-based weighting term is applied to
obtain Φ(t, f) [9, 18].

However, in multi-speaker scenarios, interfering speakers are
non-negligible factors, while the existing GCC algorithms lack the
ability to distinguish between the target speaker x(t, f) and the in-
terfering speaker ik(t, f) in Eq. (1) . Therefore, in the next section,
we will design a speaker-dependent weighting function for the GCC
algorithm to localize only the target speaker in multi-speaker scenar-
ios.

3. THE PROPOSED GCC-SPEAKER

The scheme of the proposed GCC algorithm, named GCC-speaker,
is shown in Fig. 1. It contains two parts: the weighting function part
and the loss function part. The weighting function part is used for
both the training and inference phases while the loss function part is
only used for the training phase. We will describe these two parts in
details below.

3.1. Weighting function part

Due to the approximate W-disjoint orthogonality [19] of speech sig-
nals in the time-frequency (TF) domain, in multi-speaker scenarios,
there are still many TF units dominated by the target speaker, which
is useful for the GCC algorithm to localize the target speaker. There-
fore, we propose a speaker-dependent weighting function Φspk(t, f)
for the GCC algorithm:

Φspk(t, f) =
M1(t, f)M2(t, f)

|y1(t, f)||y∗2(t, f)| , (3)

where Mi(t, f) is the speaker-dependent mask estimated from the
i-th microphone. The denominator in Eq. (3) is used to equally
emphasize all frequencies similar to the GCC-PHAT algorithm and
the numerator in Eq. (3) is design to select the TF bins dominated
by the target speaker for DOA estimation. A data-driven scheme for
estimating Mi(t, f) is utilized, which is based on the well-known
SpeakerBeam for target speech extraction [17, 20, 21, 22],

Mi(t, f) = SpeakerBeam (|yi(t, f)|, |a(t, f)|) , i = 1, 2, (4)

where |yi(t, f)| and |a(t, f)| are the amplitude spectra of the i-th
microphone signal and the adaptation utterance. The adaptation ut-
terance is a speech segment containing only the target speaker and is
crucial to inform the SpeakerBeam about the target speaker. We refer
the reader to [17, 20] for the implementing details of SpeakerBeam.

A straightforward way to get the speaker-dependent weighting
function Φspk(t, f) in Eq. (3) is to use the original SpeakerBeam
to obtain the speaker-dependent mask and then bring it into Eq.
(3) (this corresponds to the m-GCC-PHAT algorithm in the exper-
iments). However, since SpeakerBeam is optimized to estimate the
spectrum of the target speaker, it does not necessarily guarantee the
optimal localization performance. In addition, it is known that low
frequencies, which are occupied by the speech, actually yield low-
resolution spatial spectrum for localization. Therefore, simply using
the amplitude based weighting function can even degrade the per-
formance especially in reverberant conditions. In order to solve this
problem, we propose to tightly combine SpeakerBeam with the GCC
algorithm and design a novel loss function to maximize the localiza-
tion performance to optimize SpeakerBeam so as to guarantee the
optimal Φspk(t, f).
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3.2. Loss function part

In this section, rather than using the speech enhancement objective
to optimize SpeakerBeam as in [17], we first obtain the weighting
function through Eq. (3) and (4), and then integrate it into the GCC
algorithm to obtain an estimated angular spectrum b̂(t, θ),

b̂(t, θ) =

F/2∑
f=1

Φspk(t, f)<
{
y1(t, f)y∗2(t, f)ejω

d cos θ
c

}
, (5)

where θ = [0,∆θ, 2∆θ, ..., π] with spatial resolution ∆θ and <{.}
denotes real part 1.

In theory, the estimated DOA θ̂(t) can be obtained by applying
the argmaxθ operation on b̂(t, θ). As the argmaxθ is not differen-
tial, which hinders the backpropagation. In order to successfully
backpropagate gradients, we use the softargmaxθ operation [23] to
obtain θ̂(t) from b̂(t, θ),

θ̂(t) = softargmax
θ

(b̂(t, θ)) =
π∑
θ=0

exp(βb̂(t, θ))
π∑

θ
′
=0

exp(βb̂(t, θ′))
θ, (6)

where β is a hyper-parameter controlling the smoothness of the
softargmaxθ operation.

With b̂(t, θ) and θ̂(t) obtained from Eq.(5) and (6), we define a
localization-related loss using MTL as

L = αLAS + (1− α)LDOA, (7)

LAS =
∑
θ,t

(
btgt(t, θ)− b̂(t, θ)

)2
, (8)

LDOA =
∑
t

(
θtgt(t)− θ̂(t)

)2
, (9)

where btgt(t, θ) and θtgt(t) are the angular spectrum and DOA es-
timated by applying GCC-PHAT to the parallel clean microphone
signals (without interfering speakers), and they can be regarded as
ground truth values. A hyper-parameter α is used in Eq. (7) to bal-
anceLAS andLDOA. we experimentally found thatα is of importance
for network convergence. The choosing of α will be discussed in the
section 4.3.

During the training phase, the gradients calculated from Eq. (7)
can be backpropagated all the way back to the SpeakerBeam, so that
the mask estimated by SpeakerBeam can yield a Φspk(t, f) guaran-
teeing the optimal localization. During the inference phase, we only
need to apply the trained SpeakerBeam on each microphone to get
Φspk(t, f) using Eq. (3) and (4), and then bring it into the conven-
tional GCC algorithm by setting Φ(t, f) = Φspk(t, f) in Eq. (2) to
estimate the target speaker’s DOA.

4. EXPERIMENTAL RESULTS

4.1. Data

We used the room impulse responses (RIRs) to convolve the utter-
ances from the Wall Street Journal (WSJ) corpus [24] to generate
2-channel mixtures. The image method [25] was used to generate
RIRs. There were 7138 utterances from 83 speakers for training,

1Because b(t, θ) and Φspk(t, f) are theoretically real-valued, the <{.}
operation do not affect the result of Eq. (5). Moreover, <{.} allows us to
calculate the real-valued gradients for backpropagation.

410 utterances from 10 speakers for validation and 330 utterances
from 10 speakers for test. For each mixture in the training set, we
added one interfering speaker with SIR of 0 dB on average. The
target speaker and the interfering speakers were randomly located
in angles from 0◦ to 180◦. We randomly picked an adaptation ut-
terance from the utterances of the target speaker (different from the
utterance in the mixture). The average length of the adaptation utter-
ance was 10 s. We did not add ambient noise in this experiment. It
will be our future work to perform target speaker localization in the
scenario where the ambient noise and multiple interfering speakers
coexist.

We create 2 training sets: one (denoted as TR1) with T60 =
200 ms and inter-microphone spacing of 20 cm, and the other (de-
noted as TR2) with T60 varying in [200 ms, 300 ms, 500 ms] and
inter-microphone spacing varying in [10 cm, 15 cm , 20 cm]. To
facilitate testing, we generated 20 test sets. The first 11 test sets with
inter-microphone spacing of 20 cm varied only in SIR between -5
dB and 5 dB. The last 9 test sets with an average SIR of 0 dB varied
in inter-microphone spacing between 10 cm and 25 cm and T60 be-
tween 200 ms and 500 ms. Moreover, the speakers in the test set did
not appear in the training and validation sets.

4.2. Settings

The STFT frame size was 32 ms with 50% overlap, and the spatial
resolution ∆θ = 5◦. We set β = 0.1 in Eq. (6). we followed
[20] for setting SpeakerBeam. The main network of SpeakerBeam
consisted of one LSTM layer, two fully connected layers with ReLU
activation and one fully connected layer with a sigmoid activation
(numbers of neurons: 257-1080-1024-257). The second layer of the
main network was chosen as the adaptation layer and factorized into
30 sub-layers. The auxiliary network of SpeakerBeam consisted of
two layers with a ReLU activation and one layer with a linear activa-
tion (numbers of neurons: 50-50-30). Before training GCC-speaker,
we first pre-trained SpeakerBeam to minimize the cross-entropy loss
w.r.t the ideal binary masks (IBM), because we found experimen-
tally that the pre-training helps the network converge. The Adam
optimizer [26] was used. The learning rate was set to 1e-3 initially
and reduced by half when the validation loss stopped decreasing af-
ter two epochs. We used the mean absolute error (MAE) and frame-
level accuracy with error tolerance of 5◦ as the metrics to evaluate
the localization performance.

We compared the proposed GCC-speaker with (1)GCC-PHAT,
(2)the speaker-dependent mask-based GCC-PHAT algorithm (de-
noted as m-GCC-PHAT) and (3)the target speaker localization
algorithm proposed in [12] (denoted as m-cWMM). When using
GCC-PHAT, we regarded the localization result of each frame as
the target speaker’s DOA due to the fact that GCC-PHAT is un-
able to distinguish the target speaker from the interfering speakers.
Both m-GCC-PHAT and m-cWMM used SpeakerBeam to obtain
the speaker-dependent mask, which is directly used by GCC-PHAT
or the complex Watson mixture model (cWMM) [27] for local-
ization. Different from GCC-speaker, the SpeakerBeam in these
two algorithms was trained with the objective of recovering clean
signals.

4.3. Results

We first evaluated the sensitiveness of the hyper-parameter α in
Eq. (7) using the TR1 set and the test set with SIR=0 dB. We explore
the different α from [0, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1]. As can be
seen from Fig. 2, neither LAS alone (α = 1) nor LDOA alone (α = 0)
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Table 1. Results (MAE[◦] / frame-level accuracy[%]) on the test sets for different array geometries and T60s.

Method d=20cm d=15cm d=10cm
200ms 300ms 500ms 200ms 300ms 500ms 200ms 300ms 500ms

GCC-PHAT 14.7/71.3 11.1/77.6 10.3/78.8 15.1/70.3 11.6/76.6 10.3/78.4 16.2/66.7 12.8/72.6 11.9/74.2
m-GCC-PHAT 12.4/73.8 12.1/74.5 14.7/69.2 13.6/70.3 12.8/72.1 14.9/67.4 15.0/64.0 13.8/67.4 16.0/63.4

m-cWMM 12.5/73.8 12.2/74.4 14.9/68.9 13.6/70.8 13.0/71.9 15.7/66.5 14.9/66.3 14.2/67.0 16.9/62.2
GCC-speaker-TR1 9.3/80.6 7.9/83.0 10.3/78.3 11.2/76.3 9.5/79.9 11.1/77.6 13.0/72.2 11.3/76.0 13.1/73.1
GCC-speaker-TR2 10.4/78.2 8.7/80.7 9.7/79.1 11.1/76.4 9.2/79.9 9.5/79.1 12.3/72.9 10.1/77.2 10.9/75.7
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Fig. 2. The effect of the hyper-parameter α in Eq. (7).
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Fig. 3. MAE (left) and frame-level accuracy (right) as a function of
the input SIR for the test sets.

in Eq. (7) guarantees the best performance, indicating that both LAS

and LDOA are important for GCC-speaker. When α = 0.01, rel-
atively good results can be achieved. Therefore, in the following
experiments, we kept α = 0.01.

Next, we systematically evaluated the performances of the algo-
rithms for different input SIRs using the TR1 set (see Fig. 3). As
the input SIR increases, compared to GCC-PHAT, the superiority
of m-GCC-PHAT and m-cWMM disappears. This is because using
the mask with the objective of recovering clean signals may intro-
duce distortion to the angular spectrum when suppressing interfering
speakers (this will be further showed in Fig. 4). However, thanks to
the end-to-end optimization, GCC-speaker significantly outperforms
the comparative algorithms in different input SIRs.

In the following experiments, we systematically evaluated GCC-
speaker for different array geometries and T60s using TR1 set
and TR2 set. In this experiment, GCC-speaker-TR1 and GCC-
speaker-TR2 represent the GCC-speaker models trained on the
TR1 and TR2 set, respectively. As can be seen from Table 1, in
the high-reverberation environment (T60=500ms), except for the
GCC-speaker-TR2, all algorithms perform worse than GCC-PHAT.
This may be due to the inaccurate mask estimation in unseen high-
reverberation environments, which in turn affects the localization
results of GCC. Moreover, Table 1 shows that GCC-speaker-TR1
can still perform better than m-GCC-PHAT and m-cWMM in the un-
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Fig. 4. An example of target speaker localization. The target speaker
is at 55◦ and the interfering speaker is at 110◦. (a) Amplitude spec-
trum. (b)-(c) Different masks. (e)-(f) Angular spectrums obtained
by different algorithms.

seen environments, which indicates that GCC-speaker has a certain
robustness for the array geometries and the T60s. However, GCC-
speaker-TR2 can further improve the performance of GCC-speaker
in the scenes where d=10 cm or d=15 cm.

Fig. 4 shows an example of target speaker localization. We can
see from Fig. 4(e) and Fig. 4(f) that both m-GCC-PHAT and GCC-
speaker can suppress the interfering speaker on the angular spec-
trum. However, m-GCC-PHAT may cause distortion of the target
speaker’s peak on the angular spectrum while GCC-speaker can well
preserve the target speaker’s peak. Moreover, as can be seen from
Fig. 4(b) and Fig. 4(c), the mask in GCC-speaker does not restore
the target signal on all TF units like the mask in m-GCC-PHAT. This
may be due to the fact that not all the TF units are equally important
in the target speaker localization task, which indicates that using the
localization loss (e.q. (7)) instead of the speech enhancement loss is
essential for a better localization performance.

5. CONCLUSIONS

In this paper, we propose a speaker-dependent weighting function
for the GCC algorithm, so that GCC can localize only the target
speaker in a multi-speaker scenario. Besides, the mask in the pro-
posed weighting function is optimized with the objective on local-
ization performance. Experiments show that the proposed algorithm
significantly outperforms the existing target speaker localization al-
gorithms. In the future we intend to improve the performance of
target speaker localization in more complex acoustic environments.
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