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Abstract

The significant development of artificial neural network ar-
chitectures has facilitated the increasing adoption of auto-
mated music composition models over the past few years.
However, most existing systems feature algorithmic genera-
tive structures based on hard code and predefined rules, gen-
erally excluding interactive or improvised behaviors. We pro-
pose a motion based music system, MoMusic, as a AI real
time music generation system. MoMusic features a partially
randomized harmonic sequencing model based on a proba-
bilistic analysis of tonal chord progressions, mathematical-
ly abstracted through musical set theory. This model is pre-
sented against a dual dimension grid that produces resulting
sounds through a posture recognition mechanism. A camera
captures the users’ fingers’ movement and trajectories, cre-
ating coherent, partially improvised harmonic progressions.
MoMusic integrates several timbrical registers, from tradi-
tional classical instruments such as the piano to a new “hu-
man voice instrument” created using a voice conversion tech-
nique. Our research demonstrates MoMusic’s interactiveness,
ability to inspire musicians, and ability to generate coherent
musical material with various timbrical registers. MoMusic’s
capabilities could be easily expanded to incorporate different
forms of posture controlled timbrical transformation, rhyth-
mic transformation, dynamic transformation, or even digital
sound processing techniques.

Introduction
Music has played a significant factor throughout human
history though its origin is immemorial. With the prosperity
of technologies, music creation has become more available
and efficient, facilitating multiple music growth and lower-
ing the threshold of creating music. The use of computers
in the music generation also has a long history. The music
composition system has been widely used in many areas,
such as entertainment, education, healthcare, etc. The algo-
rithm used in computer-generated music has two domains:
rule-based or deep neural network (DNN)-based.
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The DNN-based music generation algorithm is popu-
lar with the development of machine learning and deep
learning algorithms. The typical music generation model
is a variational auto-encoder (VAE) (Kingma and Welling
2013), which is used in MusicVAE (Roberts et al. 2018).
With recurrent neural network (RNN) showing more pow-
erful ability in sequential modeling, many autoregression
algorithms have been proposed to generate sheet music,
including melody-RNN (Waite et al. 2016), Anticipation
RNN (Hadjeres and Nielsen 2020), DeepBatch (Hadjeres,
Pachet, and Nielsen 2017), and hierarchical RNN (Wu
et al. 2019). However, the low processing speed limits
the performance of the autoregression model. To better
handle long sequence inception, as an alternative, music
composition methods based on transformers have been
developed (Huang et al. 2018), (Huang and Yang 2020)
recently.

While using rule-based algorithms for music creation
has been a theoretical and practical concern since Ancient
Greece, it has gained increasing prominence since the
1960s (Dean 2018). Following Landy 2009, we distinguish
between note-based music, which works with sequences of
usually pitch-centered events (e.g., most forms of notated
music), and sound-based music, which focuses on the spec-
tral dimension of sound. Our proposed model introduces a
unique combination of both.

We argue that, broadly, all music-making involves the
exploration of rules or procedures that have an algorithmic
dimension (from scores to computer programs), all involv-
ing formalized abstractions of sound. Early examples of
the application of computational, algorithmic solutions to
music writing can be found in Iannis Xenakis (Xenakis
1992) stochastic models, the pioneering US algorithmic
music by Lejaren Hiller (Hiller and Isaacson 1979) or the
extensive output of the German-Dutch composer Gottfried
Michael Koenig (Bertolani 2020). Further pioneering
contributions were made by the US League of Automatic
Composers, linked ensembles such as The Hub, and other
projects such as George Lewis Voyager (Lewis 2000), a set
of co-improvising algorithmic structures.
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Figure 1: The diagram of MoMusic.

Building on Nierhaus historical survey of algorithmic
composition (Nierhaus 2009) and Fernndez & Vicos expan-
sion of his work (Fernández and Vico 2013), we propose
partial automation of some of the processes involved
in music composition (harmonic sequencing and voice-
leading). We differentiate between different methodological
approaches, including a) symbolic knowledge-based sys-
tems, b) Markov chains, c) artificial neural networks, d)
evolutionary methods, and e) self-similarity and cellular
automata processes (Fernández and Vico 2013).

Besides the algorithm, the human being is essential in
music creation. Because as one of the art forms, music aims
to serve humans. Human involvement in music creation
plays a significant role in music’s rhythm and melody.
Therefore, systems that enable interactive control for
music creation will be more attractive and expressive. For
example, the Blob Opera (Google 2000) generates opera
songs using a machine learning method, can be controlled
by users, and inspires their creativity.

Here, we present MoMusic, a motion-driven human-
AI collaborative music composition and performing sys-
tem. MoMusic can not only generate popular instrumen-
t melodies, but it also provides a novel human voice in-
strument choice. Both AI technologies and music theories
are involved in this system. Moreover, the performance is
human-awarded since the user can control the music pro-
gression in a real-time live video. Finally, users can choose
different instrument sounds according to their preferences.
In addition, users can input their voice and convert it through
MoMusic to synthesize precise human instruments with
classic tones for later performance.

Proposed System
System Overview
The diagram of our proposed MoMusic system is shown
in Fig. 1, which mainly consists of modules for a) finger
motion detection, b) algorithmic music composition, and c)
sound synthesis. Using a camera, the coordinates of the left-

and right-hand fingers are detected. They are exploited to
drive the music composition algorithm that follows the mu-
sic chord, probabilistic progression model. Given the com-
posed music melody, the music audios are generated us-
ing the timbres of instruments such as piano and violin. A-
part from the conventional instruments, a controllable virtu-
al singer is also trained to sing the melody without lyrics. A
key feature of the system is that it is implemented in real-
time. Therefore, a feedback loop is established so the users
can judge the generated music using the perception system
and adjust the subsequent music using finger movements.

Probabilistic Chord Progress Model

The systems musical material is organized following the
principles of set theory (Sowell 1977). We assign a num-
ber to each pitch of the chromatic 12-tone scale, with 0 cor-
responding to a movable C and 11 to B natural. Our pitch
matrix looks at the potential combination of two pitches, de-
fined by the values of the X and Y axes, that may be part of
a triad (three-note structure) characteristic of a Fuxian tonal
harmonic sequence (Mazzola 2017). The model thus infer-
s the third note that completes the harmony from the two-
note pair determined by the fingers locations. Each triadic
chord is then referred to as a second matrix that organizes
chord sequences according to a probabilistic model based
on a systematic analysis of chord progressions in contempo-
rary popular music. Each chord has an N number of poten-
tial continuators organized according to their probabilistic
weight, but the system applies a randomized selection pro-
cess. The overall structure of the harmonic sequences moves
from C to C, as we took C Major as a referential key, using G
as a logical mid-point and a virtually large number of chord
extensions.

One example of the chord progression is shown in Fig. 2,
in which the current status is the C chord. If a G chord is
touched, then one of the chords in the set{C, a, F, d, e, Bb}
may follow, while if a D chord is being detected, the chord
in {F, G, e, C, Bb, Eb} may follow. The subsequent actions
follow the same logic as described in the above.
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Figure 2: Chord Progression Example.

From Finger Motion Capture to Melody
Finger Motion Capture The whole system relies on
human input to guide the generation of musical melodies.
Considering the practicality of building an interactive sys-
tem, a camera is used to capture information from humans.
Since generally, the movement of hands can convey more
explicit information, such as rhythm and coordinates, than
body or facial movements, here we capture the finger
motions from the camera and map such information to the
melodies and chords.

The MediaPipe (Zhang et al. 2020), a Python library that
supports estimating the coordinates of all fingers, is used
for finger motion detection. Fig. 3 shows the finger tracking
method used in the MediaPipe. The Hand Landmark Model
in MediaPipe shows the precise location of 21 hand-knuckle
key points inside the detected hands, from which we predict
the coordinates of the user’s forefingers. In this paper, only
the index figures are used for control. The real-time video
streams are captured and fed into the MediaPipe to achieve
real-time processing.

As shown in Fig. 4, by using the OpenCV (Bradski 2000),
an operation panel divided into a grid is also shown in the
captured videos to constrain the users to move the fingers in
certain valid regions. Because the MediaPipe detection can
be inaccurate, a smaller operation region is used, which is
set to be the upper middle part of the captured image and is
found to improve the accuracy and smoothness of finger de-
tection. Since each octave is divided into 12 equal semitones,
a 12×12 uniform grid is adopted. The operation panel also
facilitates converting the absolute coordinates of the fingers
to integer values used as indexes in the tonal triadic combi-
nation matrix. Here, to make the controlling more flexible,
the left-hand and right-hand fingers are used to define the
row index Y and column index X , respectively. Based on

Figure 3: MediaPipe graph for hand tracking (Zhang et al.
2020).

the predefined boundaries of the grids, the absolute coordi-
nates of the fingers are discretized by

X = round(
Xleft − Lbd

c
), (1)

Y = round(
Yright −Bbd

c
), (2)

where X and Y are the rows and column indexes of the
tonal triadic combination matrix derived from the fingers
coordinates. Xleft and Yright are the X-coordinate and
Y-coordinate of the left and right fingers, respectively,
Lbd and Bbd denote the left and bottom boundaries of the
operation panel, and c is the side length of each grid.

We also note that when the fingers move out of the oper-
ation panel, X or Y is set to be −1, and the information is
ignored in the subsequent processing.

Chord Progression Generation Based on Finger Motion
Given the finger position and the probabilistic chord pro-
gression model, the chord series can be generated. In the
closed-loop framework, the machine consistently updates
the positions of controlling fingers and determines the X
and Y indexes. Correspondence between the X and Y in-
dexes and one of the triadic chords can be found in the
“Tonal Triadic Combinations matrix. The subsequent ac-
ceptable chords and the corresponding X and Y combina-
tions are chosen based on the probabilistic chord progres-
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Figure 4: MoMusic operation panel.

sion model. In this way, only when the fingers move into
an acceptable X and Y combination the machine generates
a harmonic continuation of the melody and remains in the
current chord set otherwise.

Virtual Human Voice Generation
Conversion from professional pitch scale recordings In
addition to the instrumental sounds (e.g., piano and vio-
lin), which can be synthesized using libraries such as flu-
idsynth, we also generate a virtual human that sings along
with the instruments, denoted as a “vocal instrument” here.
Although it is possible to generate the singing voice for dif-
ferent notes by simply shifting the pitch of one note record-
ing, the singer’s timbre cannot be preserved. Since large
amounts of recordings for professional singers are available
online, it raises the question of whether a controllable “virtu-
al singer” can be produced to sing any note with a consistent
timbre. Here, the vocal instrument is produced using voice
conversion based on FastSpeech (Ren et al. 2019), and Hi-
FiGAN (Kong, Kim, and Bae 2020), which can endow the
standard high-quality human voice corpus with any human
timbre so that users can synthesize new human voice instru-
ments freely.

Model (FastSpeech+HiFiGAN) The main structure of
the FastSpeech model is shown in Fig. 5. The FastSpeech
model takes the audio of a standard high-quality vocal
instrument as input and converts the audio features, such
as pitch and energy, into the Mel-spectrogram of the target
audio. FastSpeech adopts the structure of the Feed-Forward
Transformer (FFT), which stacks multiple FFT blocks at the
input side to realize the conversion of phonemes to graphs.
Multiple FFT blocks are also present on the output side,
eventually converting the timbres.

The Mel-spectrogram obtained from the FastSpeech mod-
el is not audible and thus cannot be used to construct human
vocal instruments directly. The Mel-spectrogram is convert-
ed into the time-domain signal by the HiFiGAN model. Hi-
FiGAN comprises a single generator and two discrimina-
tors: multi-scale and multi-period. During the training, the
generator generates the target timbre audio, and the discrim-
inator is responsible for determining whether a mapping is

Figure 5: The structure of FastSpeech (Ren et al. 2019)

predicted or actual. After the GAN network is continuously
trained, the generator’s parameters are continually adjusted
to generate audio from the mapping. The generator and dis-
criminators in the MoMusic and several extra losses are in-
troduced negatively to improve training stability and model
performance. Ultimately, in time the user cannot reach the
height and accuracy of the singer’s singing; with the help of
MoMusic’s voice conversion model, the audio of everyday
speech can be generated to cover a wide range of pitches for
the human voice instruments.

Implementation

Virtual Human Voice Model Training

Now we describe the details of training the FastSpeech and
HiFiGAN models for generating the virtual human voice.

Without of loss of generality and considering the voice
quality and pitch range of the singer, 4 hours of songs by
Maria Callas were collected from public sources such as
Youtube and Spotify, and the vocal tracks were extracted
by using the pre-trained music source separation model
Demucs. The vocal signals were then resampled to 24
kHz sampling rate, and all frame-level features including
the Mel-spectrogram, pitch, and energy, were computed
using a window size of 25 ms and 10 ms frame hop. The
FastSpeech and HiFiGAN adopted model structures the
same as the original papers. During training, the batch size
of FastSpeech and HiFiGAN were 32 and 16, respectively.
The FastSpeech was trained for 2000 epochs and the
HiFiGAN stopped after 200,000 steps.

In order to generate the virtual singing voices for different
notes with consistent timbres, we recorded a singing voice
of a professional singer for 12 pitches and converted the
singing voice from the professional singer to Maria Callas’
timbre. This way, a vocal instrument that can be flexibly con-
trolled to sing different notes is produced.
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Real-time Control
Instrument Timbre Toolbox We used the python library,
mingus (Spaans 2015), to interpret music theory and handle
the sheet music processing. In the sheet music processing,
the finger positions were mapped to specified notes accord-
ing to the ”Tonal Triadic Combinations” matrix, and chords
were further generated according to the probabilistic chord
progression model and the finger movements. The ”chord”
class in mingus was used to inquire about the note combi-
nation from the chord name, and the generated music was
written into bars. The musical sheets were further processed
by FluidSynth (Moebert 2018), which is a MIDI synthesizer
that supports 259 instruments presets and 11 drum kits, to
generate the instrumental sounds. Since FluidSynth uses
the SoundFont (.SF2) file format for the timbre of each
instrument, we also created the corresponding SoundFont
file for the vocal instrument.

Two Threads At the same time, we also adopted two
threads to update the coordinates of finger detection in paral-
lel and generate corresponding music in real time. The strat-
egy decouples the finger motion detection and sound gener-
ation modules, simplifies the control process, and improves
the stability and smoothness of the system. When the user’s
finger reaches the specified position, the system could in-
stantly convert the corresponding random notes and chords
according to the music theory.

Result
Through MoMusic, users can play music by changing the
position of their fingers and freely choosing the instrument
(traditional instruments like piano or human voice instru-
ments) they prefer. Due to the uncertainty of the finger
trajectory, the variability of the corresponding sounding
area, and the randomness of the combinations of chord and
note that conform to the Probabilistic Chord Progress Mod-
el, the rhythms and notes generated by the finger movements
are constantly changing to form an exciting melody. The
demo of the result can be found here: https://drive.google.
com/file/d/1RvigW9Z1jgb2cMoIykFphX7nckrZr5ZZ/
view?usp=sharing

Conclusion and Future Work
In conclusion, MoMusic is a motion-driven music compo-
sition system equipped with a probabilistic chord progress
model and virtual human voice model. With proper finger
trajectories, users can generate harmonious music through
MoMusic. It is interactive and expressive.

Many perspectives can be improved in the future. Since
only two forefingers are used, for now, we can assign dif-
ferent functions to the rest fingers. For example, to control
the volume, playing time, instrument, etc. Furthermore, be-
cause we only implement C major chord progression in this
system, more major chord progressions can be created later.
We also want to achieve the result that more than two chords
play simultaneously, which can generate more dulcet music.
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